
Statistics
in Medicine A. HEATH, I. MANOLOPOULOU, G. BAIO

A. The Integrated Nested Laplace Approximation612

The Integrated Nested Laplace Approximation (INLA) is a fast approximate Bayesian inference method for a wide class613
of models known as Latent Gaussian Models (LGMs) [53]. This class of models is broad as many standard modelling614
scenarios can be reformulated as LGMs, including regression models, dynamic models and spatio-temporal models [53].615

A LGM is characterised by the fact that the data, yi can be defined by a parametric family with a parameter µi616
linked to a structured linear predictor ηi, based on a set of covariates γi = (γi1, . . . , γiJ , . . . , γi(J+K)), through some617
link function h(·):618

h(µi) = ηi = α+

J∑
j=1

fj(γij) +

K∑
k=1

βkγik + εi, (10)

where fj(·) are unknown functions of the covariates γi, β = (β1, . . . , βK) are fixed regression coefficients, εi is some error619
term, and J and K are the number of functions of covariates and regressed covariates in the model [75]. The functions fj620
can be of any form and typically can represent autoregressive models, spatial effects or seasonal effects. In these settings621
the covariates γi give sequential or spatial information about the data yi. A standard generalised linear model also fits this622
framework where all the functions fj(·) are equal to 0.623

To complete the LGM formulation, a Gaussian prior is assigned to the set of parameters defining the linear predictor624
θ = (α,β, fj(·), εi), depending on some hyperparameters λ (typically, these determine the precision matrix of θ). Clearly,625
the number of elements in θ is likely to be large and therefore, to allow for fast computation, INLA is restricted to the626
case where the Gaussian prior used has a “sparse” precision matrix. This Gaussian prior with a sparse precision matrix is627
also known as a Gaussian Markov Random Field (GMRF) [76]. Fast computation using INLA is ensured if λ contains a628
relatively small number of elements, typically no greater than 6.629

At first glance, enforcing sparsity in the prior for θ may seem restrictive as sparsity in the covariance matrix implies630
marginal independence. However, sparsity in a precision matrix only enforces conditional independence, a much looser631
restriction. A 0 entry in the precision matrix implies that the two elements are independent conditionally on all other632
elements. The Markov property encoded in this sparse matrix implies that the field is memoryless: values only depend633
directly on a few neighbours. In the SPDE-INLA setting these neighbours are those ω values which share a triangle.634

Operationally, INLA explores the approximate joint posterior of the hyperparameters λ by determining the density of635
the Laplace approximation at a grid of points in the support of λ. This grid is found by “stepping” along each axis of the636
hyperparameter space until the density falls below a specified threshold. The density of the Laplace approximation is then637
evaluated at each combination of these axis points; if the density at these points is above the threshold then the point is638
included in the grid. Interpolation is then used to approximate the posterior at all points in λ. The posterior marginals for639
λ can then be found by using these lattice points for numerical integration.640

The marginals for the parameters θ are then approximated by another (simplified) Laplace approximation. This Laplace641
approximation is evaluated at each of hyperparameter values on the lattice and the approximate marginals for θ are given642
as a weighted sum of the Laplace approximation for each configuration of the hyperparameter set (weighted by the density643
at that point). In this sense, the approximate marginals for θ are nested within the Laplace approximation for posterior644
distribution of the hyperparameters.645
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B. Monotonic EVPPI estimates646

It can be easily demonstrated that the EVPPI is a non-decreasing function of the size of the parameter subset, provided647
the smaller subset is entirely contained within the larger subset. Firstly, some notation must be set up. In line with the648
paper, θ represents the set of all underlying model parameters, φ is the full set of parameters of interest and ψ is the649
complement set, θ = (ψ,φ). In addition to this notation, define ξ ⊂ φ as a smaller subset of parameters of interest and ξc650
as the complement of this set such that φ = (ξ, ξc).651

Using this notation we demonstrate that652
EVPPI(φ) ≥ EVPPI(ξ),

where EVPPI(φ) is the EVPPI of the parameter subset φ, as follows:653

EVPPI(φ) = Eφ
[
max
t

Eψ|φ [NBt(θ)]
]
−max

t
Eθ [NBt(θ)]

= Eξ
[
Eξc|ξ

[
max
t

Eψ|φ [NBt(θ)]
]]
−max

t
Eθ [NBt(θ)]

≥ Eξ
[
max
t

Eξc|ξ
[
Eψ|φ [NBt(θ)]

]]
−max

t
Eθ [NBt(θ)]

Eξ
[
max
t

Eξc|ξ
[
Eψ|(ξ,ξc) [NBt(θ)]

]]
−max

t
Eθ [NBt(θ)]

= Eξ
[
max
t

E(ψ,ξc)|ξ [NBt(θ)]
]
−max

t
Eθ [NBt(θ)] = EVPPI(ξ)

by Jensen’s inequality as the function max(·) is convex.654
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